INTRODUCCIÓN A LA BIOFÍSICA

3 horas a la semana

6 créditos

3 horas teóricas y 0 horas de laboratorio

OBJETIVO: Que el alumno adquiera conceptos básicos de biofísica que le permitan comprender algunas de sus aplicaciones en la práctica de la ingeniería.

Temas	Horas
1. La célula y las biomoléculas	8
2. La energía y los seres vivos	7
3. Dinámica de sistemas biológicos	6
4. Transducción sensorial	9
5. Biomateriales y su aplicación	9
6. Ingeniería en sistemas biológicos	9
	48
Prácticas de laboratorio	0

1. La célula y las biomoléculas

Objetivo: El alumno conocerá los componentes fundamentales de la célula y de las biomoléculas y comprenderá sus propiedades físicas.

No. Temario	Concepto	HORAS
1.1	Estructura e interacciones moleculares. Enlace iónico	
	y covalente.	1.0
1.2	Organización estructural de la célula. Células	
	procarióticas, eucarióticas y vegetales. Niveles	
	superiores de organización: tejidos, sistemas, y	
	organismos.	2.0
1.3	Biomoléculas. Origen de las biomoléculas. El agua.	
	Propiedades físicas y enlace de hidrógeno en el agua.	
	Carbohidratos, proteínas, lípidos y ácidos nucleicos.	2.0
1.4	La membrana celular. Propiedades mecánicas,	
	térmicas y eléctricas. Permeabilidad celular: canales	
	iónicos, canales acuosos, acarreadores y bombas.	2.0
1.5	Comunicación intercelular. Neuronas y el potencial	
	de acción.	1.0
		8

2. La energía y los seres vivos.

Objetivo: El alumno comprenderá los procesos de transformación de energía en los seres vivos.

No. Temario	Concepto	HORAS
2.1	La transformación de la energía. Fuentes de energía	
	de los seres vivos. Fotosíntesis.	1.0
2.2	Reacciones entre moléculas: endotérmicas y	
	exotérmicas.	2.0
2.3	Transformación de azúcares en otros compuestos.	
	Ciclo de Krebs. Fosforilación oxidativa: ATP y el poder	
	reductor.	2.0
2.4	Utilización del ATP en diversos trabajos que realiza la	
	célula: osmótico, metabólico y mecánico.	2.0
		7

3. Dinámica de sistemas biológicos.

Objetivo: El alumno comprenderá los procesos biofísicos y los bioquímicos que tienen lugar en los seres vivos.

No. Temario	Concepto	HORAS
3.1	Descripción de la termodinámica de reacciones bioquímicas.	2.0
3.2	Fluidos fisiológicos. Equilibrio electroquímico, presión osmótica, flujos de electrólitos, difusión. Biomecánica.	2.0
3.3	Breve descripción del sistema respiratorio humano. Mecánica de la respiración.	2.0
		6.0

4. Transducción sensorial.

Objetivo: El alumno comprenderá características físicas de procesos de transducción sensorial y conocerá aplicaciones de conceptos de ingeniería en estos procesos.

No. Temario	Concepto	HORAS
4.1	Anatomía del ojo de los vertebrados: pupila, cristalino, humor acuoso y fotoreceptores.	2.0
4.2	Aspectos físicos de la visión. Espectro electromagnético. Luz. Lentes intraoculares.	1.0
4.3	Anatomía del oído: órgano de Corti, canales semicirculares, terminaciones nerviosas libres y encapsuladas	2.0
4.4	Aspectos físicos de la audición: presión, oscilaciones mecánicas, sonido, infrasonido y ultrasonido. Modelo mecánico del tímpano. Intervalos de audición	2.0
4.5	Contracción muscular. Tipos de músculo y sus características.	1.0
4.6	Teoría del deslizamiento de las miofibrillas.	1.0
		9

5. Biomateriales y su aplicación.

Objetivo: El alumno conocerá las propiedades que deben poseer los materiales usados como sustitutos de tejido biológico y algunas de sus aplicaciones.

No. Temario	Concepto	HORAS
5.1	Biomateriales y biocompatibilidad.	
		2.0
5.2	Composición y propiedades mecánicas de tejidos	
	duros y blandos.	2.0
5.3	Materiales para sustitución de tejidos duro y blando.	
		2.0
5.4	Materiales en contacto con sangre.	
		1.0
5.5	Ingeniería de tejidos.	
		2.0
		9

6. Ingeniería en sistemas biológicos.

Objetivo: El alumno adquirirá una visión general de aplicaciones de conceptos de ingeniería en diferentes áreas de la biología.

No. Temario	Concepto	HORAS
6.1	Tópicos de biónica.	3.0
6.2	Tópicos de ingeniería biomédica.	3.0
6.3	Tópicos de ingeniería ambiental.	3.0
		9

Bibliografía

Bibliografía básica: Temas para los que se recomienda:

COTERRILL, R. M. Todos

Biophysics: An Introduction

1st. edition

N.Y.

John Wiley & Sons Ltd, 2002

HUGHES, William 3 y 4

Aspects of biophysics

John Wiley & Sons

GLASER, R **2, 3 y 4**

Biophysics

Berlín

Springer Verlag, 2001