

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS PRIMER EXAMEN FINAL ÁLGEBRA LINEAL

2 DE JUNIO DE 2017

SEMESTRE 2017 - 2

TIPO C

Instrucciones: Leer cuidadosamente el enunciado de cada uno de los **6** reactivos de que consta el examen antes de comenzar a resolverlos. La duración del examen es de 2.0 horas.

1. Obtener $D = N \cap P$ y demostrar que D es un subespacio del espacio vectorial real de las matrices simétricas de 2x2, donde los subespacios N y P son:

$$N = \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} \middle| 2a - 3b - c = 0; a, b, c \in \mathbb{R} \right\}, \quad P = \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} \middle| a - 2b + 2c = 0; \ a, b, c \in \mathbb{R} \right\}.$$

- **2.** Sea el conjunto $A = \{(1, k, 1), (1, -k, -1), (0, 1, 2)\}$.
 - a) Determinar el valor de $k \in \mathbb{R}$ que hace que el conjunto A sea linealmente dependiente.
 - b) Con k = 3, obtener una base del espacio generado por el conjunto A, L(A).

3. Dado el espacio vectorial $P_1 = \{ax + b \mid a, b \in \mathbb{R}\}$ y la transformación lineal $T: P_1 \to \mathbb{R}^2$ tal que:

$$T(1) = (1,2)$$
 y $T(x) = (2,1)$

Determinar:

- a) La imagen del vector $\overline{w} = 1 + x$, $T(\overline{w})$.
- b) Una base del recorrido de T.
- c) La dimensión del núcleo de T .

4. Sea el operador lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ definido por T(x, y, z) = (x, x + 3y, x + 3z).

Determinar:

- a) Una matriz asociada a T.
- b) Los valores característicos de T y el espacio característico asociado a cada uno de ellos.
- c) Una matriz que diagonalice al operador T.
- **5.** Sea $N = \{(a,b,c) \mid -2a+b-c=0; a,b,c \in \mathbb{R}\}$ un subespacio de \mathbb{R}^3 , y el producto interno usual en \mathbb{R}^3

Obtener al vector $\overline{w} \in N$ más próximo al vector $\overline{v} = (0,0,1)$.

6. Sea el espacio vectorial \mathbb{C}^2 definido sobre el campo de los números complejos, con el producto interno usual en \mathbb{C}^2 y el operador lineal $S:\mathbb{C}^2\to\mathbb{C}^2$ cuya regla de correspondencia es:

$$S(x, y) = (ix + (1+i)y, (-1+i)x + 2iy)$$

Determinar si S es un operador normal.