

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS PRIMER EXAMEN FINAL ÁLGEBRA LINEAL

2 DE JUNIO DE 2017

SEMESTRE 2017 - 2

TIPO A

Instrucciones: Leer cuidadosamente el enunciado de cada uno de los **6** reactivos de que consta el examen antes de comenzar a resolverlos. La duración del examen es de 2.0 horas.

1. Sea el conjunto:

$$N = \left\{ \begin{bmatrix} x & y \\ xy & 2x \end{bmatrix} \middle| x, y \in \mathbb{R} \right\}.$$

Determinar si N es un subespacio del espacio vectorial de las matrices cuadradas de orden dos sobre el campo de los números reales.

- **2.** Sean $A = \{(2, -i), (1, 0)\}$ y $B = \{\overline{b_1}, \overline{b_2}\}$ bases de \mathbb{C}^2 sobre \mathbb{C} . Si $M_B^A = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$ es la matriz de transición de la base A a la base B y $(\overline{x})_B = \begin{bmatrix} 5 \\ -10 \end{bmatrix}$, determinar:
- a) Los vectores de la base B.
- b) El vector \overline{x} .
- **3.** Dada la transformación lineal $H: \mathbb{R}^2 \to P_3$, donde $P_3 = \left\{ a + bx + cx^2 + dx^3 \, \middle| \, a, b, c, d \in \mathbb{R} \right\}$ y la transformación definida por $H(a,b) = a + bx + (a+b)x^2 + (a-b)x^3$.

Obtener:

- a) El núcleo de la transformación H.
- b) La dimensión del recorrido de H.

4. Sea el operador lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ y sean $\overline{v}_1 = \begin{pmatrix} 1,0 \end{pmatrix}$ y $\overline{v}_2 = \begin{pmatrix} -2,1 \end{pmatrix}$ vectores característicos del operador T, asociados a los valores característicos $\lambda_1 = 1$ y $\lambda_2 = -1$, respectivamente.

Determinar:

- a) La imagen del vector $\overline{w} = (1,0) + 2(-2,1)$.
- b) Si el operador T es diagonalizable.
- **5**. Sean $W = \{(a,b,a) | a,b \in \mathbb{R}\}$ un subespacio de \mathbb{R}^3 y el producto interno usual en \mathbb{R}^3 .

Determinar:

- a) El complemento ortogonal de W.
- b) La proyección del vector $\overline{u} = (1,2,3)$ sobre W.

6. Dados el espacio vectorial \mathbb{R}^2 con el producto interno usual, el operador lineal simétrico $T:\mathbb{R}^2\to\mathbb{R}^2$ y los vectores característicos $\overline{v}_1=(2,1)$ y $\overline{v}_2=(1,-2)$ asociados a los valores característicos $\lambda_1=1$ y $\lambda_2=6$, respectivamente, determinar la regla de correspondencia de T utilizando la descomposición espectral del operador T.