

DIVISIÓN DE CIENCIAS BÁSICAS SECCIÓN DE ÁLGEBRA

SERIE TEMA 4: "POLINOMIOS" SEMESTRE: 2019-2

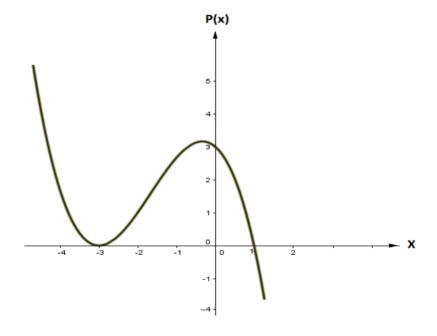
1. Determinar las raíces del polinomio $p(x) = x^7 + 2x^6 - 4x^5 - 2x^4 + x^3 - 4x^2 + 6x$, si $\alpha = -3$ es una de sus raíces.

2.- Para el polinomio
$$p(x) = x^5 - 5x^4 + 5x^3 + 11x^2 - 24x + 12$$

determinar:

- a) Las posibilidades en que pueden presentarse las raíces de p(x).
- b) Las raíces del polinomio p(x).

3.- Sea p(x) un polinomio de grado tres, cuya gráfica se muestra en la figura



Expresar al polinomio p(x) en términos de sus factores lineales.

FACULTAD DE INGENIERÍA COORDINACIÓN DE MATEMÁTICAS

DIVISIÓN DE CIENCIAS BÁSICAS SECCIÓN DE ÁLGEBRA

- 4.- Sea el polinomio $p(x) = 2x^6 + 6x^5 4x^4 8x^3 + 6x^2 14x + 12$.
 - a) Determinar las posibilidades en que pueden presentarse las raíces de p(x) de acuerdo a la regla de los signos de Descartes.
 - b) Expresar a p(x) en términos de sus factores lineales, siendo uno de sus factores (x+i).
- 5.- Sea el polinomio $p(x) = x^4 x^3 + Ax^2 x + B$. Determinar el valor de A y el de B $\in \square$ para que el polinomio p(x) tenga como raíces a $\alpha_1 = 2$ y $\alpha_2 = -i$.
- 6.- Dado el polinomio $p(\theta) = \cos^3 \theta + \cos^2 \theta 2$. Determinar las raíces del polinomio $p(\theta)$.
- 7.- Sea el polinomio $p(x) = x^5 (1+i)x^4 + 7x^3 (7+7i)x^2 + 12x B$.
 - a) Obtener el valor de $B \in \square$, si (x-1-i) es factor de p(x).
 - b) Con el valor obtenido de B, calcular todas las raíces de p(x).
 - c) Expresar a p(x) en términos de sus factores lineales.
- 8.- Obtener los valores de A, B y C $\in \Box$ para que los polinomios $p(x) = x^3 + 3x^2 x 5$ y $q(x) = A(3x 2) + B(x^3 7x 1) + Cx^2$ sean iguales.

FACULTAD DE INGENIERÍA COORDINACIÓN DE MATEMÁTICAS

DIVISIÓN DE CIENCIAS BÁSICAS SECCIÓN DE ÁLGEBRA

- 9.- Sea el polinomio $h(x) = x^6 6x^5 + 10x^4 12x^3 + 17x^2 6x + 8$.
 - a) Si $\alpha = -i$, es una de sus raíces, determinar las raíces de h(x).
 - b) Expresar a h(x) en términos de sus factores lineales.

10.- Obtener el polinomio p(x) de menor grado, de coeficientes reales, su cuatro de sus raíces son $\alpha_1 = -2 + 2i$, $\alpha_2 = 3 - \sqrt{5}$, $\alpha_3 = \alpha_4 = 0$.

11.- Para el polinomio $p(x) = x^5 + 3x^4 - 2x^3 - 10x^2 + 8$.

Determinar:

- a) Las posibilidades en que pueden presentarse las raíces de p(x).
- b) Las raíces del polinomio p(x).
- 12.- Obtener las raíces del polinomio

$$f(x) = x^5 + 6x^4 + 7x^3 - 8x^2 + 6x + 36$$

si $\alpha_1 = 1 + i$ es una de ellas.

- 13.- Sea el polinomio $p(x) = -2x^3 + Ax^2 + Bx 12$.
 - a) Obtener $A \ y \ B \in \square$, si (x-1) es un factor de p(x) y -2 es una raíz de p(x).
- b) Con los valores de A y B obtenidos, determinar las raíces de p(x).

FACULTAD DE INGENIERÍA COORDINACIÓN DE MATEMÁTICAS

DIVISIÓN DE CIENCIAS BÁSICAS SECCIÓN DE ÁLGEBRA

14.- Sea el polinomio $p(x) = x^3 - Ax^2 - Bx + 12$.

- a) Determinar el de valor de A y $B \in \square$, si la gráfica del polinomio p(x) contiene a los puntos $P_1(3,0)$ y $P_2(2,0)$.
- b) Con los valores de A y B obtenidos, calcular las raíces de p(x).

15.- Sea el polinomio p(x) de grado 4 con coeficientes reales, p(x) contiene a los puntos A(1, 0), B(-3, 24) y C(0,-1), $\alpha = -i$ es una de sus raíces y (x-1) es uno de sus factores lineales. Determinar al polinomio en términos de sus factores lineales.

16.- Sea el polinomio $p(\lambda) = \lambda^3 - 12\lambda + 2k$.

- a) Determinar el valor de $k \in \square$ para que $\alpha \in \square$ * sea una raíz con multiplicidad 2.
- b) Las raíces de $p(\lambda)$ con el valor de k obtenido en el inciso anterior.

17.- Sea el polinomio $f(x) = x^9 + x^8 - 4x^7 - 2x^6 + x^5 - 3x^4 + \beta x^3$.

- a) Determinar el valor de $\beta \in \square$, considerando que $(x-\sqrt{3})$ es factor de f(x).
- b) Obtener las raíces de f(x).

18.- Obtener las raíces del polinomio $p(x) = x^3 f(x)g(x)$ del cual se conoce lo siguiente:

$$f(x) = x^3 + (1+i)x^2 + (-2+i)x - 2i$$
 tiene como raíz a $(-i)$ y $g(x) = x^3 + 3x^2 - 2x - 6$ cumple que $g(\sqrt{2}) = 0$.