

Código:	MADO-02
Versión:	02
Página	2/48
Sección ISO	7.3
Fecha de	08 de agosto de 2016
emisión	ar arguera ar = ar a

Secretaría/División: División de Ciencias Básicas

Área/Departamento: Laboratorio de Mecánica Experimental

La impresión de este documento es una copia no controlada

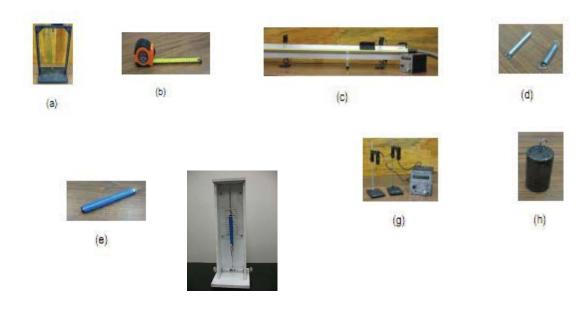
PRÁCTICA 1

MEDICIÓN DE DIMENSIONES FUNDAMENTALES

Código:	MADO-02
Versión:	02
Página	3/48
Sección ISO	7.3
Fecha de emisión	08 de agosto de 2016

Secretaría/División: División de Ciencias Básicas

Área/Departamento: Laboratorio de Mecánica Experimental


La impresión de este documento es una copia no controlada

OBJETIVOS

- Medición de dimensiones mecánicas fundamentales: Longitud, Tiempo y Fuerza.
- Elaboración de gráficas tiempo-posición para un cuerpo que se desliza sobre una rampa.
- Elaboración de la gráfica elongación-fuerza para resortes que se sujetan a deformaciones
- Análisis de situaciones de equilibrio mecánico respecto a configuraciones en las que se usen resortes.

EQUIPO A UTILIZAR

- a) Marco metálico
- b) Flexómetro
- c) Riel de aire con accesorios
- d) Resortes (2)
- e) Dinamómetro de 10 [N]
- f) Equipo para caracterización de resortes
- g) Cronometro digital con sensores
- h) Masa de 100 [g]

Código:	MADO-02
Versión:	02
Página	4/48
Sección ISO	7.3
Fecha de emisión	08 de agosto de 2016

Secretaría/División: División de Ciencias Básicas

Área/Departamento: Laboratorio de Mecánica Experimental

La impresión de este documento es una copia no controlada

ACTIVIDADES PARTE I

1. Ubique dos puntos A y B sobre el riel de aire como se indica en la *Figura No.1* Debe tenerse una pendiente muy pequeña con la finalidad de observar detenidamente el movimiento del cuerpo. Consigne la distancia d.

Figura No. 1

- 2. Con la compresora encendida permita que el cuerpo se deslice libremente a partir del reposo.
- 3. Mida el tiempo que emplea el cuerpo en recorrer la distancia **d** entre los puntos A y B. Consigne dicho valor en la *Tabla No.1* como evento número 1.

		Distanc	cia const	ante d =	=		_[m]			
Evento	1	2	3	4	5	6	7	8	9	10
Tiempo [s]										

Tabla No. 1

- 4. Sin apagar la compresora repita las actividades 2 y 3 hasta completar la Tabla No1.
- 5. Ahora, defina un intervalo de tiempo de manera que con respecto a él y a partir del reposo, el cuerpo se desplace recorriendo la mayor parte del riel.
- 6. Permita que el cuerpo deslice libremente a partir del reposo

Código:	MADO-02
Versión:	02
Página	5/48
Sección ISO	7.3
Fecha de emisión	08 de agosto de 2016

Secretaría/División: División de Ciencias Básicas Área/Departamento:

Laboratorio de Mecánica Experimental

La impresión de este documento es una copia no controlada

7. Mida la distancia recorrida durante el intervalo de tiempo definido, consigne dicho valor en la *Tabla No. 2* como evento número 1

		Tiempo	o consta	nte t = _		[s]			
Evento	1	2	3	4	5	6	7	8	9	10
Distancia [cm]										

Tabla No2

8. Repita las actividades 6 y 7 hasta completar la *Tabla No.2* sin apagar la compresora.

ACTIVIDADES PARTE II

1. Instale el arreglo mostrado en la Figura No. 2. El dinamómetro deberá estar previamente calibrado

Figura No. 2

- 2. Aplique una fuerza de tensión al resorte 1 (largo) y registre en la *Tabla No.3* la elongación del resorte y la magnitud de la fuerza como evento número 1.
- 3. Repita el paso anterior 2, aumentando la magnitud de la fuerza hasta completar los diez eventos para el primer resorte. No exceder a 3 [cm] la elongación total.

Código:	MADO-02
Versión:	02
Página	6/48
Sección ISO	7.3
Fecha de emisión	08 de agosto de 2016

Secretaría/División: División de Ciencias Básicas	Area/Departamento:		
	Laboratorio de Mecánica Experimental		

La impresión de este documento es una copia no controlada

4. Con el resorte 2 (corto) repita las actividades 1, 2 y 3 consigne las mediciones en la *Tabla No.3*. No exceder a 14 [cm] la elongación total.

	Resorte 1 (largo)	Resorte 2 (corto)		
EVENTO	Elongación	F	Elongación	F	
EVENTO	δ [cm]	[N]	δ[cm]	[N]	

Tabla No.3

ACTIVIDADES PARTE III

1. Sobre el marco m	netálico ubique dos	s puntos A y B y arme la c	configuración q	ue se muestra en la Figura No.3.
2. Determine las coo	ordenadas de los p	ountos A, B y C.		
Α (,) [cm]	B (,) [cm]	C (,) [cm]
3. Mida las elonga	iciones que presen	ntan los resortes.		
	Ln ₁ =	[cm]	Ln ₂ =	[cm]
	۶ _	[cm]	S _	[cm]
	$\delta_1 = \underline{\hspace{1cm}}$	[cm]	U ₂	[cm]

Código:	MADO-02
Versión:	02
Página	7/48
Sección ISO	7.3
Fecha de emisión	08 de agosto de 2016

Secretaría/División: División de Ciencias Básicas

Área/Departamento: Laboratorio de Mecánica Experimental

La impresión de este documento es una copia no controlada

y también mida con el dinamómetro el peso W de la masa proporcionada:

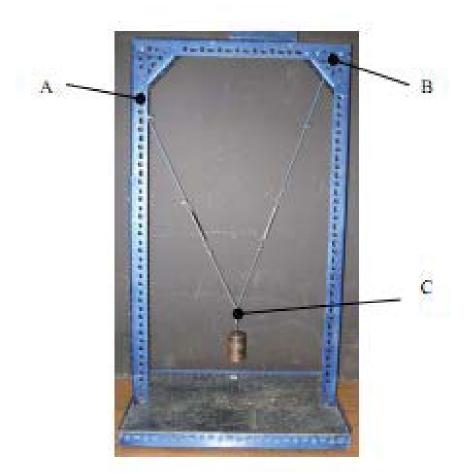


Figura No. 3

Código:	MADO-02
Versión:	02
Página	8/48
Sección ISO	7.3
Fecha de emisión	08 de agosto de 2016

Secretaría/División: División de Ciencias Básicas

Área/Departamento: Laboratorio de Mecánica Experimental

La impresión de este documento es una copia no controlada

CUESTIONARIO

NOTA: En el informe se deberán presentar los resultados en unidades del SI.

- 1. Con los datos consignados en las *Tablas No. 1* y *No. 2* elabore las graficas correspondientes (t-d).
- 2. Estime la incertidumbre para el tiempo y para la distancia. La incertidumbre puede cuantificarse como el máximo de todos los valores absolutos de la diferencia del valor promedio y cada valor registrado.

$$\sigma_{\text{max}} = |valor_{prom} - valor_{registrado}|$$

3. Con los datos consignados en la *Tabla No.3*, elabore las gráficas correspondientes $F = F(\delta)$. Emplee el método de los mínimos cuadrados (ecuaciones i y ii) para establecer las expresiones analíticas que muestren a la fuerza como función de la elongación para cada resorte.

$$b = \frac{\left(\sum x_i^2\right)\left(\sum y_i\right) - \left(\sum x\right)\left(\sum x_i y_i\right)}{n\sum x_i^2 - \left(\sum x_i\right)^2}$$
 (i)

$$m = \frac{n(\sum x_i y_i) - (\sum x_i)(\sum y_i)}{n\sum x_i^2 - (\sum x_i)^2}$$
 (ii)

- 4. En la actividad 3 de la parte III observe que las fuerzas que actúan en el punto C forman un sistema de fuerza en equilibrio. Determine las magnitudes y las direcciones de las fuerzas a partir de los datos registrados.
- 5. Por otra parte deduzca analítica o gráficamente, las magnitudes de las fuerzas que ejercen los resortes en el punto C.
- 6. Compare las magnitudes de las fuerzas obtenidas en el punto 4 con las magnitudes obtenidas en el punto 5. ¿Qué concluye?
- 7. Elabore conclusiones y comentarios.

Código:	MADO-02
Versión:	02
Página	9/48
Sección ISO	7.3
Fecha de emisión	08 de agosto de 2016

Secretaría/División: División de Ciencias Básicas

Área/Departamento: Laboratorio de Mecánica Experimental

La impresión de este documento es una copia no controlada

BIBLIOGRAFÍA

- MERIAM, J, KRAIGE, Glenn
 Mecánica para ingenieros, estática
 3a. edición
 Barcelona
 Reverté, 2004
- HIBBELER, Russell
 Ingeniería mecánica, estática
 12a. edición
 México, D.F.
 Pearson Prentice Hall, 2010
- BEER, Ferdinand, JOHNSTON, Rusell, MAZUREK, David Mecánica vectorial para ingenieros, estática 10a. edición México, D.F. McGraw-Hill, 2013